skip to main content


Search for: All records

Creators/Authors contains: "Glassmire, Andrea E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    An increasing number of ecological studies have used chemical diversity as a functionally relevant, scalable measure of phytochemical mixtures, demanding more rigorous attention to how chemical diversity is estimated. Most studies have focused on the composition of phytochemical mixtures and have largely ignored structural concerns, which may have greater importance for ecological function. Here, we explore the development of structural complexity and compositional diversity resulting from different biotic and abiotic interactions inPiper kelleyiTepe (Piperaceae). We also describe how variation in structural complexity and compositional diversity differs between two congeners,P. kelleyiandP.reticulatum. To better interpret these results, we have developed a framework for interpreting these dimensions of chemical diversity in phytochemical mixtures.

    We used the tropical shrub,P.kelleyi, as a model system to examine interactions between ecological factors and dimensions of phytochemical diversity. We also compared compositional diversity and metabolic complexity inP. kelleyiandP. reticulatumusing liquid chromatography and1H NMR, respectively, to examine trade‐offs between compositional diversity and structural complexity. A framework is provided to generate meaningful estimates of the structural complexity of phytochemical mixtures as measured by1H NMR.

    Piperis an abundant plant genus that supports diverse insect communities throughout the tropics. Subtle changes in understorey forest light were associated with increases in herbivory that directly increased compositional diversity and indirectly decreased structural complexity inP. kelleyi. This was attributed to the production of oxidation products resulting from herbivory‐driven decomposition of structurally complex defence compounds. This type of complex result would remain undetected using standard chemical ecology approaches and accounts for the detailed molecular changes that are likely to affect species interactions.

    Synthesis. Our quantitative framework provides a method for considering trade‐offs between structural complexity and compositional diversity and the interpretation of analytical approaches for each. This methodology will provide new theoretical insights and a more sophisticated model for examining the ecology and evolution of chemically mediated interactions.

     
    more » « less
  3. Abstract

    Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape. Specifically, intraspecific phytochemical changes associated with vertical strata in forests were hypothesised to affect herbivore communities of the neotropical shrubPiper kelleyiTepe (Piperaceae). Using a field experiment, we found that phytochemical diversity increased with canopy height, and higher levels of phytochemical diversity located near the canopy were characterised by tradeoffs between photoactive and non‐photoactive biosynthetic pathways. For understory plants closer to the ground, phytochemical diversity increased as direct light transmittance decreased, and these plants were characterised by up to 37% reductions in herbivory. Our results suggest that intraspecific phytochemical diversity structures herbivore communities across the landscape, affecting total herbivory.

     
    more » « less